二分。情况讨论
因为数组有序,所以能够考虑用二分。通过二分剔除掉肯定不是第k位数的区间。如果数组A和B当前处理的下标各自是mid1和mid2。则
1、假设A[mid1]<B[mid2],
①、若mid1+mid2+2==k(+2是由于下标是从0開始的),则
mid1在大有序数组中下标肯定小于k,所以能够排除[0,mid1]。此外。B[mid2]下标大于或等于k。能够排除[mid2+1,n];
②、若mid1+mid2+2<k,则
mid1在大有序数组中下标肯定小于k,所以能够排除[0,mid1]
③、若mid1+mid2+2>k,则
B[mid2]下标大于k,能够排除[mid2,n];
2、假设A[mid1]<B[mid2]情况相符,仅仅是下标改变。
这些操作处理完后。可能一个数组被排除了,即满足lowX>highX。此时仅仅需对还有一个数组进行二分,同一时候二分其元素在还有一个数组中的下标,确定全局下标,终于通过推断全局下标与k的关系。确定是否为第k数
class Solution {public: int findPos(int* p,int n,int x){ int low=0,high=n-1,mid; while(low<=high){ mid=(low+high)>>1; if(p[mid]<=x)low=mid+1; else high=mid-1; } return low; } double findK(int a[], int m, int b[], int n,int k){ int mid1,mid2,low1=0,low2=0,high1=m-1,high2=n-1,x; while(low1<=high1&&low2<=high2){ mid1=(high1+low1)>>1; mid2=(high2+low2)>>1; if(a[mid1] >1; x=findPos(b,n,a[mid1]); if(x+mid1+1==k)return a[mid1]; else if(x+mid1=m?a[m-1]:a[low1]; } else { // if(low2==high2)return b[low2]; while(low2<=high2){ mid2=(low2+high2)>>1; x=findPos(a,m,b[mid2]); if(x+mid2+1==k)return b[mid2]; else if(x+mid2 =n?
a[n-1]:b[low2]; } } double findMedianSortedArrays(int a[], int m, int b[], int n) { int k=m+n; if(k&1){ return findK(a,m,b,n,k/2+1); } else{ return (findK(a,m,b,n,k/2)+findK(a,m,b,n,k/2+1))/2.0; } } };